1.精確的有限元建模是大型橋梁鳳震響應預測的重要前提;也是結構安全監測,損傷檢測以及實現最優振動控制的基礎。但是,盡管有限無法得到了高度的發展,實際復雜結構的有限元模型仍然是有誤差的。有限元建模為結構飛行提供完整的理論模態參數集,但這些參數常常與結構模態實驗得到的參數不一致。因此,必須對結構理論模型進行調整或修正,使得修正后的模態參數與實驗相一致,這一過程即有限元模型修正。
模型修正法在橋梁監測中主要用于把實驗結構的振動反應記錄與原先的模型計算結果進行綜合比較,利用直接或間接測知的模態參數,加速度時程記錄,頻響函數等,通過條件優化約束,不斷地修正模型中的剛度和質量信息,從而得到結構變化的信息,實現結構的損傷判別與定位。其主要方法有:
(1)矩陣型法,是發展最早,最成熟,修正計算模型的整個矩陣的一類方法,它具有精度高、執行容易的特點,主要缺點是所修正的模型的物理意義不明確,喪失了原有限元模型的帶狀特點,這方面的代表應屬Berman/Baruch的最優法。
(2)子矩陣修正法,通過對待修正的字矩陣或單元矩陣定義修正系數,通過對宇矩陣修正系數的調整來修正結構剛度,該方法的最大優點是修正后的剛度矩陣仍保持者原矩陣的對稱,稀疏性。
(3)靈敏度法修正結構參數通過修正結構的設計參數彈性模量E截面面積A等來對有限元模型進行修正。
上述的前兩種方法通過求解一個矩陣方程或帶約束的最小化問題來修正剛度和質量矩陣,并假定剛度與質量的變化相互獨立。因此,這類方法不適用于結構剛度矩陣和質量矩陣變化相關的有限元模型修正。而大跨度橋梁的質量變化通常會弓愧結構剛度的變化,屬于典型的非線性問題。只有第三種方法利用觀測量對結構參數的敏感性來修正結構參數。基于敏感性分析的參數修正可以從敏感分析的中間結果看出各參數對結構振動的影響程度;并且,可直接解釋結構物理量的修改,無須通過利用總綱陣的比較來反映修改情況。然而但待修正參數較多時,該方法常會得出違背物理意義的參數修正。
2.指紋分析方法,尋找與結構動力特性有關的動力指紋,通過這些指紋的變化來判斷結構的真實狀況。
在線監測中,頻率是最易獲得的模態參數,而且精度很高,因此通過監測頻率的變化來識別結構破損是否發生是最為簡單的。此外,振型也可用于結構破損的發現,盡管振型的測試精度低于頻率,但振型包含更多的破損信息。利用振型判斷結構的破損是否發生的途徑很多;MAC,COMAC,CMS,DI和柔度矩陣法。
但大量的模型和實際結構實驗表明結構損傷導致的固有頻率變化很小,而振型形式變化明顯[11,12],一般損傷使結構自振頻率的變化都在5%以內[11,12],而Askegaard等在對橋梁的長期觀測后發現,在一年期間里橋梁即使沒有任何明顯的變化,其振動頻率的變化也可達10%[63],因此一般認為自振頻率不能直接用來作為橋梁監測的指紋,而振型雖然對局部剛度比較敏感,但精確測量比較困難,MAC,COMAC,CMS等依賴于振型的動力指紋都遇到同樣的問題。對橋缺損狀態的評價缺乏統一有效的指標,有人以模糊理論,結構可靠度理論等為理論框架建立了各種橋梁使用性能評估專家系統,但必須首先建立各種規范和專家數據庫。
四、結論與展望
(l)由于大跨橋梁受環境因素影響較大,安全系數低,必須對其進行連續實時監測。
(2)由于GPS定位精度高,速度快,同其他幾種位移監測儀器相比具有明顯的優點,可用它對大跨度橋梁做連續實時監測,同時應進一步提高其精度,從而擴展其應用范圍。目前GPS已在虎門大橋安裝成功,實現了對大橋連續實時監測。
(3)在系統識別方面,比較了時域和頻域法的優劣,今后應進行結合時頻的系統識別研究。
(4)在模型修正方面,應在基于敏感性分析的基礎上,研究適合于大跨橋梁的模型修正方法。
(5)由于對橋梁缺損狀態的評價缺乏統一有效的指標,應結合實驗測試和有限元建模研究適合于大跨橋梁的指紋指標。